






Deep Insights on Massive Data
Data warehouses today have difficulty analyzing the exploding amount of data, much 
less meeting new business analytics demands. You are either forced to discard potentially 
high-value data or simplify your analysis – until now. Aster nCluster is a massively 
parallel processing (MPP) database which helps you better understand customer behav-
ior, monetize new opportunities, and control risk by using all of your data. Aster nCluster 
transforms off-the-shelf commodity hardware into a high-performance analytic database 
capable of handling the most demanding data warehousing environments by providing:

• Powerful analytics 
• Incremental scalability
• Easy manageability

Powerful Analytics
Aster nCluster allows you to get deep insights from your data quickly – answers you 
can’t get with traditional approaches that are overwhelmed with complex queries. Behind 
Aster’s analytic power are patent-pending algorithms designed to efficiently perform 
complex multi-terabyte joins and aggregations at breakthrough speed for processing 
large-scale queries, reporting, and analysis. Aster nCluster provides fast, scalable loading 
that ensures your data and results remain fresh and up-to-date.

Incremental Scalability
Traditional data warehouses require you to plan out analytic capacity requirements 
months or years in advance, as well as make large capital purchases (i.e., “super-size”) 
up-front. Aster nCluster lets you start with minimal investment (right size) and scale 
incrementally when needed (right time). Aster nCluster is built on a unique, multi-tiered 
nCluster architecture which consists of three separate classes of nodes: Queens, Workers, 
and Loaders. The three-tier design encapsulates a clean separation of roles for analytic 
processing. Each tier can be independently and incrementally scaled in response to the 
workload characteristics – adding more capacity (Workers), loading bandwidth 
(Loaders), or concurrency (Queens) on an as-needed basis. Your data warehouse can now 
scale on-demand to adapt to your changing business conditions.

Figure 1: Aster nCluster provides a multi-tiered architecture for independent, linear, and incremental scalability

Datasheet

Quick overview:

Aster nCluster makes it easy to derive deep 

insights from large data sets. The shared 

nothing nCluster architecture transforms 

off-the-shelf, commodity hardware into a 

powerful, self-managing, and scalable analytic 

database capable of handling the most 

demanding data warehouse environments.

Key Benefits:

• Gain deep insights on massive data sets

• Scale incrementally from 100s of GBs to 100s

  of TBs and beyond with low-cost, commodity

  nodes

• Increase data capacity, query performance, or

  loading bandwidth independently

• Automate database administration and

  maintenance tasks

• Ensure high availability and resiliency with

  pervasive self-management
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Easy Manageability
Data warehouses are expensive to operate 
due to support costs for administration, 
tuning, and maintenance. The iterative loop 
of installation and tuning continues relent-
lessly as data grows and hardware genera-
tions change. Aster nCluster provides a 
unifying cluster fabric to ensure high 
availability, adaptation, and resiliency with 
minimal effort via pervasive self manage-
ment. By providing a single system image to 
administrators, Aster nCluster automates 
heterogeneous cluster administration while 
still providing complete system visibility and 
control. Your data warehouse can now adapt 
to its hardware infrastructure transparently.

Key Features
POD (Performance Optimized Dimensional) 
Partitioning™ – patent-pending algorithms 
that intelligently place data to minimize 
network traffic across nodes and enhance 
query performance.

POD Transport™ – optimize query perfor-
mance by combining compression and 
aggressive buffering for network-efficient 
shuffling of data segments at query run-time.

Network-optimized query planning –  
algorithms combine global and local 
optimizers for maximum parallel processing 
performance and network efficiency.

Precision scaling – incrementally increase 
capacity or performance across multiple 
functional tiers (query, loading, export, etc). 
Scale independently or in unison to meet 
business requirements via commodity 
hardware.

Heterogeneous commodity scale-out – 
extend multiple generations of commodity 
hardware to scale easily over time – no 
proprietary appliance hardware lock-in or 
rip-and-replace upgrades.

Efficient parallel loading – parallel loading 
scales linearly with additional nodes to meet 
any required SLA.  Loading is concurrent 

with query processing – queries can 
continue uninterrupted during loading due 
to workload isolation. 

Single-system manageability – unifying 
cluster fabric provides single-system 
interface to administrators.  Automates 
routine cluster administration (OS and 
DBMS installation, configuration, and load 
balancing) while providing visibility and 
control.

One-click scaling – go from raw hardware 
to a fully-balanced system within minutes – 
compared to days with other data 
warehouse alternatives. Provisioning, 
cluster rebalancing, and data replication 
are handled automatically.

Self-healing high availability and recovery – 
highly resilient system continues query 
processing, even in the event of failures.  
Predictive heuristics and healing algorithms 
provide fast, automated recovery from both 
hardware and transient software failures.

Online replica restoration – in the event of 
node failure, system recovery initiates 
replica restoration in the background with 
no system down-time.  Change-tracking 
restoration algorithms offer ultra-fast 
recovery times.

About Aster Data Systems
Aster Data Systems is a proven innovator 
in massively parallel processing (MPP) 
databases for data warehousing and 
analytics – bringing deep insights on 
massive data analyzed on clusters of 
commodity hardware. Co-founded by three 
colleagues in the Stanford Computer 
Science Ph.D. program, Aster’s nCluster 
database provides patent-pending innova-
tions in scalability, manageability, availabil-
ity, and analytics.  Aster is headquartered in 
Redwood City, California and is backed by 
Sequoia Capital, Cambrian Ventures, and 
First-Round Capital.
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Technical Specifications

• Linux-based operating system

• Massively parallel processing (MPP)

• Supported server hardware: all

    x86-based industry-standard servers

• Supported network hardware: 1 GbE or

    10GbE industry-standard switches

• Supported APIs: SQL, JDBC, ODBC

• Industry-standard ANSI SQL-92 with

    SQL-99 extensions

• Interoperable with leading BI and ETL

    tools

• Fully portable from Teradata, Oracle,

    Microsoft SQL Server, MySQL, Sybase,

    IBM DB2, and other relational

    databases
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Scaling data analytics to hundreds of 

terabytes is a real challenge facing today's 

Internet enterprises. As our ability to 

capture and analyze finer granularity data 

increases, businesses are imposing greater 

demands on the analytics infrastructure. 

Unfortunately, the current generation of 

databases was not designed with such scale 

in mind. Data architects are feverishly 

looking for solutions to manage such scales 

effectively and efficiently. This document 

illustrates the challenges of scale and how 

new technologies can be harnessed to tame 

the data explosion in analytics 

applications. 
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Data has become a highly valued 

business asset.  
 

 

 

 

 

 

Finer granularity data capture and 

automation of business processes 

are driving an explosive rate of  

data growth. 
 

 

 

 

A successful transition to next-

generation data analytics requires 

fresh thinking. 

Explosive Data Growth 

 
Data analytics has become a key enabler of business 

processes in the Internet enterprises of today. Enterprises 

rely on collecting and analyzing historical log data to 

discover trends, identify problems and reduce uncertainty. 

Such a feedback loop helps improve relevancy and 

targeting and enables enterprises to gain a competitive 

advantage in areas that range from search and marketing 

to internal operations and logistics. 

 

The progress in computing, networking and storage 

technologies have opened up the flood gates of data 

creation, delivery and capture. Where we once talked 

about Gigabytes of data, we now discuss tens of Terabytes 

going to hundreds of Terabytes. Today, it would be 

difficult to find an Internet enterprise that is not motivated 

to collect terabytes of data for some or all of its processes. 

 

For many organizations, accelerated data growth and the 

need to retain and store historical information are straining 

enterprise compute capacities. Growth in managed data 

volumes results in increased costs, slower performance, 

and diminished service levels, and enterprises often spend 

millions of dollars to constantly upgrade their server, 

network and storage hardware.  

 

It is important to realize that these are short-term fixes that 

simply help the status quo persist. The scale of the 

problem has changed since the first analytics solutions 

were deployed, and we need to step back, recognize the 

changed fundamentals, and adapt to them if we are to 

successfully tame hundreds of terabytes of business data. 

 

In this paper, we will explore the price/performance, 

manageability and availability challenges in scaling data 

analytics systems. We then suggest how new technologies 

can be harnessed to overcome these challenges. 
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Larger data sets take longer to 

query, load, reorganize, index, 

materialize, and back up. 

 

 

 

 

 

 

 

 

 

 

 

 

Aggressive summarizing and 

expiration of data trades off scaling 

at the expense of functionality and 

value. 

 

 

 

 

 

 

 

 

The Price/Performance Challenge 

 

As the volume of data to be analyzed increases to 

hundreds of terabytes, the performance of analytics 

applications deteriorates, often exponentially. Larger 

datasets take longer to query, load, reorganize, index, 

materialize, and back up.  

 

The next-generation data analytics platforms will ideally 

scale linearly in price/performance, i.e., upgrading to a 

data analytics system with twice the performance and 

capacity should cost no more than twice the original 

system. We call this the price/performance challenge. 

 

As volumes of data increase, one of the first ways to keep 

good price/performance is to reduce data through 

summarization (rollups) and through expiration of lower-

value items. For example, websites frequently summarize 

click-through logs by aggregating all clicks from a 

particular page for a particular content over a day; this 

improves performance and reduces storage requirements. 

The performance bottleneck, however, is now moved to 

the load process, in which a new phase is introduced: in 

addition to indexing new data, a variety of computations 

are also performed on this new data. This bottleneck can 

become significant and severely limit the aggressiveness 

of summarization; the next step is to curtail the amount of 

data loaded into the analytics system. 

 

While summarization and expiration seem to be low-cost 

solutions to the data volume problem, from a business 

perspective they turn out to be expensive. The reduced 

level of input with aggressive expiry of data results in a 

loss of valuable information. Expired data can never be 

queried again, unless it is reloaded into the platform from 

offline storage (a tedious, undesirable process). Rejecting 

input to the analytics system denies the opportunity of 

even including this data in rollups. Compounding this 

effect, summarizing and expiration are stop-gap measures, 

effective only until the next improvement in analytics 

applications require finer-grain data and longer 

operational histories. 
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Current commercial data stores 

were designed to scale vertically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vertical scaling is inherently super-

linear both in performance 

improvements and cost. 

 

 

 

 

 

 

 

 

 

 

Manual horizontal partitioning 

provides improved 

price/performance scaling by 

isolating workloads, but it has its 

limitations.

The long-term approach to handling increased data and 

performance needs is to increase system capacity. The 

design of current commercial databases and file-stores 

started from the concept of running on a single server, so 

the easiest way to scale is vertically, i.e., more main 

memory, faster and more CPUs, faster and bigger storage. 

 

The first problem with vertical scaling is that its benefits 

are limited by hardware: the amount of memory that can 

be installed on a motherboard is limited, the maximum 

speed of CPUs is limited, and the maximum disk 

bandwidth is limited. As a result, vertical scaling becomes 

a race against the dreaded performance bottleneck. A 16 

GB increase in main memory may enable the current 

working set to fit entirely in memory, thus offering a 

performance boost. However, as soon as the working set 

spills over to disk, performance plummets, requiring either 

another memory upgrade (which may or may not be 

possible), or a faster storage array to handle the I/O 

requirements. The balance of a system is determined by its 

workload, and as soon as this workload changes in a 

vertically-scaled system, the bottleneck simply moves to 

another component, requiring further upgrades and 

increased expenses. 

 

The second problem with vertical scaling is that upgrade 

cost increases exponentially with the size of the system. A 

4-GB memory chip is much more expensive than 4 x 1-

GB chips; a 3-GHz CPU for a 4-way SMP costs more than 

twice a 3-GHz CPU for 2-way SMPs. The result is that an 

equal-sized successive upgrade becomes more expensive 

than the previous one, until it hits the aforementioned 

hardware limit. When data size growth outpaces 

performance improvements in hardware, the limitations of 

vertically-scaled systems become painful. 

 

A well-known alternative is horizontal scaling, which 

offers data analytics managers the hope for faster 

operations at a lower cost, by adding more servers. 64 

dual-CPU commodity servers are considerably less 

expensive than a high-end 128-CPU SMP server. Data 

analysts can partition data sets across separate, isolated 

servers, thus leveraging the horizontal scaling effect. 

Often the partitioning attribute is an isolation-inducing 

attribute, i.e., attributes that naturally isolate queries 

across the different partitions (e.g., date field, content  
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Horizontal scaling works for simple 

schemas and pre-planned join 

queries. Otherwise, the shared 

network imposes scaling limitations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In large-scale systems based on 

commodity hardware, the total cost 

of ownership is dominated by 

human costs, not hardware or 

software. 

identifier, customer identifier, etc.) using a hash-based or 

range-based partitioning scheme. When such partitioning 

causes load imbalances across partitions and load spikes 

on the frequently-used partition, administrators are forced 

to scale each partition vertically. 

 

We note that, in horizontally-scaled systems, the network 

interconnect quickly becomes a bottleneck. Horizontal 

scaling works for relatively simple schemas and queries 

with joins on the partitioning attribute. However, if the 

schema is complex, there is no single isolation-inducing 

attribute, and even simple join queries require exchange of 

data over the network between the distributed nodes. 

When terabytes of data have to be shipped across the 

network for each join in each query, performance is 

limited by the latency and bandwidth of interconnect, thus 

limiting the degree to which horizontal scaling can be 

achieved. Commodity interconnects, like Gigabit Ethernet, 

become insufficient; once again one must either up-grade 

to expensive, proprietary, high-speed interconnects, or 

reduce the volumes of data. 

 

It quickly becomes apparent that horizontal scaling 

requires native system support for parallelization across 

hundreds of commodity hardware nodes. This is the only 

way to properly harness the aggregate bandwidth and 

processing power of a cluster, while taking advantage of 

the price/performance benefits it offers. Whereas vertical 

scaling is limited by hardware and cost, horizontal scaling 

is fundamentally limited by the Interconnect - once this 

bottleneck is removed, horizontal scaling becomes 

unbounded. 

 

The Manageability Challenge 

 

In the previous section we concluded that horizontal 

scaling using commodity hardware is the only way to 

accommodate next-generation data analytics platforms. 

We now analyze the implications of this choice on 

manageability. In large-scale systems based on 

commodity hardware, the total cost of ownership is 

dominated by the human costs, not hardware or software; 

these human costs go primarily toward system and 

database administration, tuning, and maintenance. 

 

 

rdemare
Pencil



                                                           
                                                             Confidential and Proprietary 

                                                                                                                      Do Not Distribute 

6 

 

 

 

In large-scale Internet services, 

51% of downtime is due to human 

mistakes in maintenance and 

operations. 

 

 

 

 

 

 

 

 

 

The vast majority of human 

mistakes are due to unmanageable, 

poorly designed systems. 
 

 

A common assumption about commodity hardware is that 

it fails more often and requires more maintenance than 

expensive proprietary hardware. However, a recent study
1

 

on some of the largest Internet services has shown that 

only 15% of downtime is due to hardware problems, 

whereas 51% is caused by human mistakes in maintenance 

and operations and 34% is due to software errors (note 

that these downtime figures exclude scheduled downtime). 

These Internet services predominantly use commodity 

hardware and open-source software, and commodity 

hardware is clearly not the main culprit. 

 

How can we explain the large fraction due to human 

mistakes? As system scale increases, the complexity of 

maintenance processes increases: configuration involves 

many different files, while tuning involves dozens of 

parameters. The complexity of detecting failures, isolating 

them, diagnosing, and finally recovering from them 

becomes untenable, leading to errors. Management 

consoles offer ever-greater visibility into hundreds of 

operational metrics, but these are often ineffective in 

identifying and correcting failures or performance 

problems. Moreover, human-induced downtime has the 

highest duration per occurrence: incorrect upgrades, 

wrong performance tuning, mis-configurations all lead to 

failures that take very long to detect and to remedy. The 

vast majority of such mistakes result from the antiquated, 

poor design of the underlying system, as well as from the 

scarcity of good monitoring and management tools for 

large-scale data analytics platforms. 

 

Finally, the administrators that are called upon to manage 

the software and data aspects are faced with an 

exceptionally hard task. More data means more files to 

manage, more operating system tuning and maintenance, 

more file-system administration overhead 

(RAID/SAN/NAS setup, logical volumes, disk space 

allocation). 

 

 

        1 

D. Oppenheimer et al. "Why Do Internet Services Fail, and 

What Can Be Done About It?” in USENIX Symposium on Internet 

Technologies and Systems, 2003. 
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Next-generation data analytics 

platforms require radical 

improvements in self-management. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In large-scale data analytics 

platforms, failure probabilities of 

individual components add up 

rapidly to reduce the MTTF of the 

overall system. 
 

Organizations typically respond by increasing their staff: 

more administrators, more operations staff, and more 

management tools and processes. This staff performs more 

frequent backups, more manual replication, and requires 

more inter-human communication. Yet, the effectiveness 

of larger teams of administrators has significantly 

diminishing returns, which leads to an unfavorable ROI 

for the expansion of administration teams. 

 

The solution for managing the next-generation data 

analytics systems must be centered around extreme 

simplification of management interfaces and processes. 

The only way to achieve this degree of simplification in 

complex large-scale systems is through the use of 

pervasive self-management. An easy-to-manage data 

analytics platform must be built from the ground up, with 

extreme manageability in mind from day one. 

 

The High-Availability Challenge  
 

The cost of an outage in a data analytics system is directly 

proportional to the number of revenue-generating 

processes that are affected by the outage, as well as the 

number of users whose productivity drops during the 

outage. Yet, as the scale of an enterprise's data analytics 

increases, so does the usage: more data, more users, more 

queries. The cost of downtime is thus compounded, as 

revenue-driving processes that drive the data volume 

growth in data volumes and usage become themselves 

more deeply engrained in the fabric of the organization. In 

this section we analyze this challenge. 

 

Availability of a system is generally an expression of the 

system's readiness to deliver service, and can be expressed 

as a ratio between the system's mean-time-to-failure 

(MTTF) and its mean-time-to-recovery (MTTR): 

 

Availability = MTTF  / (MTTF + MTTR) 

 

On small-scale systems, building several layers of 

redundancy helps reduce MTTF. Consequently, some 

organizations expect that mere redundancy and fail-over 

can address all their availability concerns. However, large-

scale data analytics systems have tens to hundreds of 

CPUs, hundreds to thousands of disks, frequent complex 

loading processes, many administrators, many  
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Next-generation data analytics 

systems must recover fast from 

failures, and minimize disruption 

caused by failures and ensuing 

recovery. 

 

 

 

 

 

 

 

 

 

 

 

 

An analytics system must offer 

means to eliminate all scheduled 

downtime. 

 

 

 

 

 

 

Next-generation data analytics 

systems should require zero human 

intervention during recovery from a 

wide range of failures.

applications running on top, and so on; the failure 

probabilities of each of these individual parts add up to 

drastically reduce the MTTF of the overall system. 

Adding more such units for redundancy may actually 

reduce overall availability, with the end result being a 

diminishing return on the investment in redundant 

hardware and software. 

 

In the face of such diminishing returns on MTTF 

improvements, the focus must be on reducing MTTR; in 

the limit, a system that instantly recovers from every fault 

is 100% available. Reducing unavailability (which is 

approximately MTTR/MTTF) by an order of magnitude 

through a ten-fold increase in MTTF is considerably more 

difficult and expensive than reducing MTTR by a factor of 

ten, especially in a very large-scale system. There are two 

ways to reduce time-to-recover: first, one can preserve the 

current approach to recovery, but engineer the system to 

perform that recovery faster; second, one can reduce the 

scope of recovery, thus making recovery both faster and 

less disruptive.  

 

Finally, scheduled downtime must always be factored in 

overall downtime. A data analytics system that is up for 

20 hours a day and unavailable while loading data during 

the other 4 hours has an effective availability rating of 

83% - i.e., not even a single nine of availability. As data 

volumes increase, loading and backup times increase as 

well, leading to even lower availability. It is therefore 

imperative that load processes have minimal impact on the 

ability of the system to serve queries. 

 

In summary, mere reuse of replication technologies that 

has worked in the past for vertically-scaled systems is now 

insufficient, and the requirement of frequent human 

intervention is hurting availability of large-scale data 

analytics systems. To achieve high availability, enterprises 

must choose analytics systems that recover fast, require no 

downtime for loading and maintenance, minimize the 

impact of failure and recovery on their users, and demand 

no human intervention during recovery. 
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Beehive is a scalable cluster-based 

data analytics engine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Beehive cluster consists of 3 

classes of nodes: queens (Q), 

workers (W), and loaders (L). 

 

 
 

 

 

 

 

Beehive: A New Data Analytics Platform 
 

Aster Data Systems offers the Aster Beehive, a novel 

cluster-based data analytics engine that is able to store and 

analyze data in sizes ranging from a hundred gigabytes to 

hundreds of terabytes. It provides fast queries over large 

data volumes while supporting industry-standard 

ODBC/JDBC SQL interfaces and transactions. 

 

Beehive is a software appliance that harnesses the power 

of a large cluster of commodity hardware nodes to provide 

the highest level of price/performance & linear scalability. 

 

Beehive offers administrators a single-system view of the 

cluster, and transparently handles query distribution, result 

aggregation, node failures, data distribution and load 

balancing. The platform enables plug-and-play, one-node-

at-a-time incremental scaling, as well as in-flight removal 

of nodes to allow phasing out of failed or old hardware.  

 

Beehive Architecture: Clean Separation of 

Concerns 
 

Beehive is a shared-nothing data analytics engine that is 

designed from the ground up to run on large clusters of 

commodity nodes. Each such node is composed of parts 

that provide the best price/performance of the day: for 

example, in 2006, the best price/performance components 

are 8 GB RAM,  4 x 250-GB SATA disks,  and dual-

processor dual-core AMD Opteron systems interconnected 

by a fabric of 24-port 1Gb Ethernet switches. 

 

Beehive manages user data in locally-attached storage on 

individual nodes within the cluster. Internally, the cluster 

consists of three separate classes of nodes: queens, 

workers, and loaders. 

 

The Queen nodes provide the external single-system 

interface to the data analytics engine. End-users and 

administrators connect to a Queen through ODBC/JDBC, 

while system administrators monitor Beehive through the 

APIs provided by a Queen. The Queen nodes are also 

responsible for coordinating the cluster nodes in query 

processing, result aggregation and failure handling. 

 

N
1 

BI 

Reports 

Beehive 

N
2 

N
3 

W W WW
.

.

. 

L L L 

Q Q
.

.

. 

rdemare
Pencil



                                                           
                                                             Confidential and Proprietary 

                                                                                                                      Do Not Distribute 

10 

 

 

 

 

 

 

 

Each tier in Beehive can scale 

linearly, independently of all other 

tiers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beehive implements a provably 

optimal data partitioning algorithm. 

 

 

 

 

 

 

 

 

 

 

 

Beehive addresses the 

price/performance challenge 

through linear, incremental scaling 

across a wide range. 
 

 

The Worker nodes are responsible for storing partitions of 

data and replicas of data that resides at other Worker 

nodes. The Worker nodes also participate in query 

processing and maintenance tasks (e.g., indexing, 

backups, load balancing) as invoked by the Queen nodes. 

The Loader nodes are responsible for partitioning and 

loading of new data into the Worker nodes.  

 

The three-tier design encapsulates a clean separation of 

concerns for data analytics processes. Each tier can be 

independently scaled in response to the workload 

characteristics. For example, if the number of connections 

increases, the cluster can be populated with more Queen 

nodes; if data volumes grow, the number of Worker nodes 

can be increased; if faster loads are desired, more Loader 

nodes can be provisioned. 

 

Addressing the Challenges of Next-Generation 

Data Analytics Platform 
 
Beehive is built from the ground up to provide high 

performance while scaling to hundreds of terabytes. Two 

key innovations allow Beehive to overcome the price / 

performance challenge of large-scale data analytics 

platforms: a revolutionary data partitioning algorithm, and 

specialized incremental scaling algorithms. 

 

Beehive implements a provably-optimal data partitioning 

algorithm that 

1. determines the optimal partitioning strategy using 

statistics of incoming data, 

2. solves the network performance bottleneck of 

horizontal systems, and 

3. corrects data imbalances, thus ensuring load balancing 

without any performance impact or downtime. 

 

Beehive provides for incremental scaling of Worker nodes 

which ensures that each addition of a commodity node 

will proportionally speed up the workload.  

 

Taken together, Beehive addresses the price/performance 

challenge by enabling automated horizontal scaling in 

low-cost steps: to scale the data analytics platform by 

100GB, just add one more $3K commodity Worker node. 

Performance will increase along with the data capacity of 

the system.  
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Human operator interaction with 

Beehive is limited to plugging in 

new nodes and removing old ones. 

 

 

 

 

 

 

 

 

 

Beehive addresses the 

Manageability Challenge by 

radically simplifying the human 

operator tasks, thereby eliminating 

error-prone human management. 

Beehive addresses the manageability challenge of 

large-scale data analytics by presenting a single-system 

image to end-users and administrators. The complexities 

of cluster management are completely hidden from the 

human operators.  

 

The interaction of human operators with Beehive is 

limited to two simple tasks: plug new nodes into the 

cluster, and/or remove failed/old-generation nodes from 

the cluster racks. 

 

Once a new PXE-enabled node is powered on in the 

cluster, Beehive takes over the entire process of imaging 

the node, migrating data over to the new node from an 

overloaded node, constructing the requisite indexes on the 

newly gained data and creating the requisite backups.  
 
Once a failed node is detected, or an old-generation node 

is marked for replacement, Beehive takes over the entire 

process of isolating the node from the operational cluster, 

assigning its data to other nodes in the cluster, and 

updating the necessary status maps for the replicas. 

 

We note that in terms of managing the actual data, 

Beehive is significantly simpler than traditional databases. 

The administrator does not have to be concerned about 

configuration issues relating to the file-system and 

operating system. For example, there are no visible files to 

manage, no RAID arrays to create, no kernel patches to 

apply, no disk space to allocate, etc. The database 

administrator manages the system only through standard 

SQL commands. 

 

Beehive addresses the high-availability challenge of 

large-scale data analytics by building an automated 

multi-tier failure recovery process that focuses on 

reducing MTTF as well as MTTR for the failed 

components. 

 

Internally, each user data byte is replicated three times 

across disjoint hardware sets. The replication factor helps 

reduce MTTF; observe that the commodity structure of the 

cluster keeps the costs low even for such a high 

redundancy factor. Beehive detects and recovers from 

failures very fast, ensuring minimal MTTR.   
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Beehive addresses the  

High-Availability Challenge by 

making failure recovery very fast 

and automatic. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Beehive scales linearly in 

queries/sec with the number of 

Worker nodes in the cluster.

The Beehive philosophy is to cast failures of components 

as performance degradations. This conscious trade-off of 

performance for availability enables us to design Beehive 

to minimize outages. 

 

For example, if a Worker node fails, queries that are 

currently being processed in Beehive do not fail. Instead, 

Beehive recovers from the failure transparently within 

seconds, and restarts the lost portion of the queries on an 

appropriate dataset. A failure thus induces minimal 

amount of re-work, ensuring that the large-scale cluster 

makes progress even as nodes join or leave the cluster. 

 

Benchmarks on the Beehive Prototype 
 
TPC-H is an industry-standard benchmark for evaluating 

data analytics systems; the #1 TPC-H position is highly 

coveted by database vendors, and they spend millions of 

dollars to tune and optimize their systems for these 

benchmark tests. 

In our internal benchmarking of the Throughput Test on 

100-GB and 300-GB datasets in May 2005, a Beehive 

prototype achieved higher performance than the fastest 

TPC-H systems in the respective categories, while 

delivering a 8x-12x price/performance advantage. These 

results were shown analytically to hold for multi-terabyte 

databases as well (1TB, 3TB, 10TB, etc.). 

No special tuning was performed for this benchmark. 

 

 

 

 

 

In conclusion, the Aster Data Systems Beehive platform is 

raising the bar for next-generation data analytics systems, 

by successfully addressing the challenges related to 

price/performance, manageability, and high availability. 
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 About Aster Data Systems 
 

Aster Data Systems, Inc. is an early-stage stealth-mode 

startup company building high-performance, ultra-

scalable, affordable data analytics solutions for the 

enterprise. The company is based in Redwood Shores, CA 

and was founded by three Ph.D. students from the 

Computer Science Department at Stanford University. The 

Beehive platform is based on a number of unique, patent-

pending innovations.  

 

Mayank Bawa, Founder & Chief Executive Officer  

Mayank graduated with a Ph.D. in computer science from 

Stanford University in 2005, where he designed and 

implemented algorithms for querying large distributed 

data systems. Mayank has published a dozen academic 

papers in the top database conferences. He has been 

affiliated with IBM Research and Microsoft Research. At 

Stanford University, Mayank was named Sequoia Capital 

Fellow as part of the Stanford Graduate Fellowship 

program. Prior to Stanford, Mayank received his B.S. in 

computer science from IIT Bombay; he ranked 4th in the 

entrance exams for the IITs.  

George Candea, Founder & Chief Technology Officer 

George received his Ph.D. in computer science from 

Stanford University in 2005, where he focused on large-

scale software system dependability; his key contributions 

are the "microreboot" technique for fast recovery from 

software failures and the "crash-proof design" for software 

construction. He was a co-founder of the Recovery-

Oriented Computing (ROC) project and has published 

over a dozen research papers in this area. In 2005, George 

was awarded the Top 35 Young Technology Innovators 

award by the MIT Technology Review. Between 1998-

2003, George was a senior developer at Oracle Corp. in 

the distributed systems and caching division; previously, 

he held positions at IBM Research and Microsoft 

Research. He received his BS and MS in computer science 

from the Massachusetts Institute of Technology, where he 

worked on operating systems and mobile computing. 
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 Tassos Argyros, Founder & Vice President Engineering 

Tassos has been working with Prof. David Cheriton in the 

Computer Science department at Stanford University, as 

part of his PhD research. As a member of the Distributed 

Systems Group, Tassos was investigating the network and 

software issues involved in the design and implementation 

of large-scale data clusters. He is a recipient of a Stanford 

Graduate Fellowship and holds a Diploma in Electrical 

and Computer Engineering from the National Technical 

University of Athens.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For more information, please contact us at 

info@asterdata.com or 1-888-ASTER-DATA. 

rdemare
Pencil




