

Deep Insights on Massive Data
Data warehouses today have difficulty analyzing the exploding amount of data, much
less meeting new business analytics demands. You are either forced to discard potentially
high-value data or simplify your analysis – until now. Aster nCluster is a massively
parallel processing (MPP) database which helps you better understand customer behav-
ior, monetize new opportunities, and control risk by using all of your data. Aster nCluster
transforms off-the-shelf commodity hardware into a high-performance analytic database
capable of handling the most demanding data warehousing environments by providing:

• Powerful analytics
• Incremental scalability
• Easy manageability

Powerful Analytics
Aster nCluster allows you to get deep insights from your data quickly – answers you
can’t get with traditional approaches that are overwhelmed with complex queries. Behind
Aster’s analytic power are patent-pending algorithms designed to efficiently perform
complex multi-terabyte joins and aggregations at breakthrough speed for processing
large-scale queries, reporting, and analysis. Aster nCluster provides fast, scalable loading
that ensures your data and results remain fresh and up-to-date.

Incremental Scalability
Traditional data warehouses require you to plan out analytic capacity requirements
months or years in advance, as well as make large capital purchases (i.e., “super-size”)
up-front. Aster nCluster lets you start with minimal investment (right size) and scale
incrementally when needed (right time). Aster nCluster is built on a unique, multi-tiered
nCluster architecture which consists of three separate classes of nodes: Queens, Workers,
and Loaders. The three-tier design encapsulates a clean separation of roles for analytic
processing. Each tier can be independently and incrementally scaled in response to the
workload characteristics – adding more capacity (Workers), loading bandwidth
(Loaders), or concurrency (Queens) on an as-needed basis. Your data warehouse can now
scale on-demand to adapt to your changing business conditions.

Figure 1: Aster nCluster provides a multi-tiered architecture for independent, linear, and incremental scalability

Datasheet

Quick overview:

Aster nCluster makes it easy to derive deep

insights from large data sets. The shared

nothing nCluster architecture transforms

off-the-shelf, commodity hardware into a

powerful, self-managing, and scalable analytic

database capable of handling the most

demanding data warehouse environments.

Key Benefits:

• Gain deep insights on massive data sets

• Scale incrementally from 100s of GBs to 100s

 of TBs and beyond with low-cost, commodity

 nodes

• Increase data capacity, query performance, or

 loading bandwidth independently

• Automate database administration and

 maintenance tasks

• Ensure high availability and resiliency with

 pervasive self-management

Queen Node Group

Queen
Node

Queen
Node

Worker Node Group

Data Load

Queries/Answers

Worker
Node

Worker
Node

Worker
Node

Worker
Node

Worker
Node

BI Tools
& Rules
Engine

Queries
Answers

External
Data
Target

External
Data

Source

Data
Collection

Data
Export

Loader Node Group

Loader
Node

Loader
Node

Exporter
Node

Aster nCluster

Easy Manageability
Data warehouses are expensive to operate
due to support costs for administration,
tuning, and maintenance. The iterative loop
of installation and tuning continues relent-
lessly as data grows and hardware genera-
tions change. Aster nCluster provides a
unifying cluster fabric to ensure high
availability, adaptation, and resiliency with
minimal effort via pervasive self manage-
ment. By providing a single system image to
administrators, Aster nCluster automates
heterogeneous cluster administration while
still providing complete system visibility and
control. Your data warehouse can now adapt
to its hardware infrastructure transparently.

Key Features
POD (Performance Optimized Dimensional)
Partitioning™ – patent-pending algorithms
that intelligently place data to minimize
network traffic across nodes and enhance
query performance.

POD Transport™ – optimize query perfor-
mance by combining compression and
aggressive buffering for network-efficient
shuffling of data segments at query run-time.

Network-optimized query planning –
algorithms combine global and local
optimizers for maximum parallel processing
performance and network efficiency.

Precision scaling – incrementally increase
capacity or performance across multiple
functional tiers (query, loading, export, etc).
Scale independently or in unison to meet
business requirements via commodity
hardware.

Heterogeneous commodity scale-out –
extend multiple generations of commodity
hardware to scale easily over time – no
proprietary appliance hardware lock-in or
rip-and-replace upgrades.

Efficient parallel loading – parallel loading
scales linearly with additional nodes to meet
any required SLA. Loading is concurrent

with query processing – queries can
continue uninterrupted during loading due
to workload isolation.

Single-system manageability – unifying
cluster fabric provides single-system
interface to administrators. Automates
routine cluster administration (OS and
DBMS installation, configuration, and load
balancing) while providing visibility and
control.

One-click scaling – go from raw hardware
to a fully-balanced system within minutes –
compared to days with other data
warehouse alternatives. Provisioning,
cluster rebalancing, and data replication
are handled automatically.

Self-healing high availability and recovery –
highly resilient system continues query
processing, even in the event of failures.
Predictive heuristics and healing algorithms
provide fast, automated recovery from both
hardware and transient software failures.

Online replica restoration – in the event of
node failure, system recovery initiates
replica restoration in the background with
no system down-time. Change-tracking
restoration algorithms offer ultra-fast
recovery times.

About Aster Data Systems
Aster Data Systems is a proven innovator
in massively parallel processing (MPP)
databases for data warehousing and
analytics – bringing deep insights on
massive data analyzed on clusters of
commodity hardware. Co-founded by three
colleagues in the Stanford Computer
Science Ph.D. program, Aster’s nCluster
database provides patent-pending innova-
tions in scalability, manageability, availabil-
ity, and analytics. Aster is headquartered in
Redwood City, California and is backed by
Sequoia Capital, Cambrian Ventures, and
First-Round Capital.

Aster nCluster | Datasheet

Aster Data Systems
http://www.asterdata.com

Copyright © 2008 Aster Data Systems. All rights reserved. Aster and the Aster logo are registered trademarks in the United States and/or
other jurisdictions.

All other marks and names mentioned herein may be trademarks of their respective companies. Information is subject to change without notice.

Technical Specifications

• Linux-based operating system

• Massively parallel processing (MPP)

• Supported server hardware: all

 x86-based industry-standard servers

• Supported network hardware: 1 GbE or

 10GbE industry-standard switches

• Supported APIs: SQL, JDBC, ODBC

• Industry-standard ANSI SQL-92 with

 SQL-99 extensions

• Interoperable with leading BI and ETL

 tools

• Fully portable from Teradata, Oracle,

 Microsoft SQL Server, MySQL, Sybase,

 IBM DB2, and other relational

 databases

 Confidential and Proprietary

 Do Not Distribute

1

Next-Generation Data Analytics Platforms

Taming Hundreds of Terabytes

Explosive Data Growth p. 2

The Price/Performance

Challenge p. 3

The Manageability

Challenge p. 5

The High-Availability

Challenge p. 7

Beehive: A New

Data Analytics Platform p. 9

About Aster Data Systems p. 13

Scaling data analytics to hundreds of

terabytes is a real challenge facing today's

Internet enterprises. As our ability to

capture and analyze finer granularity data

increases, businesses are imposing greater

demands on the analytics infrastructure.

Unfortunately, the current generation of

databases was not designed with such scale

in mind. Data architects are feverishly

looking for solutions to manage such scales

effectively and efficiently. This document

illustrates the challenges of scale and how

new technologies can be harnessed to tame

the data explosion in analytics

applications.

rdemare
Pencil

 Confidential and Proprietary

 Do Not Distribute

2

Data has become a highly valued

business asset.

Finer granularity data capture and

automation of business processes

are driving an explosive rate of

data growth.

A successful transition to next-

generation data analytics requires

fresh thinking.

Explosive Data Growth

Data analytics has become a key enabler of business

processes in the Internet enterprises of today. Enterprises

rely on collecting and analyzing historical log data to

discover trends, identify problems and reduce uncertainty.

Such a feedback loop helps improve relevancy and

targeting and enables enterprises to gain a competitive

advantage in areas that range from search and marketing

to internal operations and logistics.

The progress in computing, networking and storage

technologies have opened up the flood gates of data

creation, delivery and capture. Where we once talked

about Gigabytes of data, we now discuss tens of Terabytes

going to hundreds of Terabytes. Today, it would be

difficult to find an Internet enterprise that is not motivated

to collect terabytes of data for some or all of its processes.

For many organizations, accelerated data growth and the

need to retain and store historical information are straining

enterprise compute capacities. Growth in managed data

volumes results in increased costs, slower performance,

and diminished service levels, and enterprises often spend

millions of dollars to constantly upgrade their server,

network and storage hardware.

It is important to realize that these are short-term fixes that

simply help the status quo persist. The scale of the

problem has changed since the first analytics solutions

were deployed, and we need to step back, recognize the

changed fundamentals, and adapt to them if we are to

successfully tame hundreds of terabytes of business data.

In this paper, we will explore the price/performance,

manageability and availability challenges in scaling data

analytics systems. We then suggest how new technologies

can be harnessed to overcome these challenges.

rdemare
Pencil

 Confidential and Proprietary

 Do Not Distribute

3

Larger data sets take longer to

query, load, reorganize, index,

materialize, and back up.

Aggressive summarizing and

expiration of data trades off scaling

at the expense of functionality and

value.

The Price/Performance Challenge

As the volume of data to be analyzed increases to

hundreds of terabytes, the performance of analytics

applications deteriorates, often exponentially. Larger

datasets take longer to query, load, reorganize, index,

materialize, and back up.

The next-generation data analytics platforms will ideally

scale linearly in price/performance, i.e., upgrading to a

data analytics system with twice the performance and

capacity should cost no more than twice the original

system. We call this the price/performance challenge.

As volumes of data increase, one of the first ways to keep

good price/performance is to reduce data through

summarization (rollups) and through expiration of lower-

value items. For example, websites frequently summarize

click-through logs by aggregating all clicks from a

particular page for a particular content over a day; this

improves performance and reduces storage requirements.

The performance bottleneck, however, is now moved to

the load process, in which a new phase is introduced: in

addition to indexing new data, a variety of computations

are also performed on this new data. This bottleneck can

become significant and severely limit the aggressiveness

of summarization; the next step is to curtail the amount of

data loaded into the analytics system.

While summarization and expiration seem to be low-cost

solutions to the data volume problem, from a business

perspective they turn out to be expensive. The reduced

level of input with aggressive expiry of data results in a

loss of valuable information. Expired data can never be

queried again, unless it is reloaded into the platform from

offline storage (a tedious, undesirable process). Rejecting

input to the analytics system denies the opportunity of

even including this data in rollups. Compounding this

effect, summarizing and expiration are stop-gap measures,

effective only until the next improvement in analytics

applications require finer-grain data and longer

operational histories.

rdemare
Pencil

 Confidential and Proprietary

 Do Not Distribute

4

Current commercial data stores

were designed to scale vertically.

Vertical scaling is inherently super-

linear both in performance

improvements and cost.

Manual horizontal partitioning

provides improved

price/performance scaling by

isolating workloads, but it has its

limitations.

The long-term approach to handling increased data and

performance needs is to increase system capacity. The

design of current commercial databases and file-stores

started from the concept of running on a single server, so

the easiest way to scale is vertically, i.e., more main

memory, faster and more CPUs, faster and bigger storage.

The first problem with vertical scaling is that its benefits

are limited by hardware: the amount of memory that can

be installed on a motherboard is limited, the maximum

speed of CPUs is limited, and the maximum disk

bandwidth is limited. As a result, vertical scaling becomes

a race against the dreaded performance bottleneck. A 16

GB increase in main memory may enable the current

working set to fit entirely in memory, thus offering a

performance boost. However, as soon as the working set

spills over to disk, performance plummets, requiring either

another memory upgrade (which may or may not be

possible), or a faster storage array to handle the I/O

requirements. The balance of a system is determined by its

workload, and as soon as this workload changes in a

vertically-scaled system, the bottleneck simply moves to

another component, requiring further upgrades and

increased expenses.

The second problem with vertical scaling is that upgrade

cost increases exponentially with the size of the system. A

4-GB memory chip is much more expensive than 4 x 1-

GB chips; a 3-GHz CPU for a 4-way SMP costs more than

twice a 3-GHz CPU for 2-way SMPs. The result is that an

equal-sized successive upgrade becomes more expensive

than the previous one, until it hits the aforementioned

hardware limit. When data size growth outpaces

performance improvements in hardware, the limitations of

vertically-scaled systems become painful.

A well-known alternative is horizontal scaling, which

offers data analytics managers the hope for faster

operations at a lower cost, by adding more servers. 64

dual-CPU commodity servers are considerably less

expensive than a high-end 128-CPU SMP server. Data

analysts can partition data sets across separate, isolated

servers, thus leveraging the horizontal scaling effect.

Often the partitioning attribute is an isolation-inducing

attribute, i.e., attributes that naturally isolate queries

across the different partitions (e.g., date field, content

rdemare
Pencil

 Confidential and Proprietary

 Do Not Distribute

5

Horizontal scaling works for simple

schemas and pre-planned join

queries. Otherwise, the shared

network imposes scaling limitations.

In large-scale systems based on

commodity hardware, the total cost

of ownership is dominated by

human costs, not hardware or

software.

identifier, customer identifier, etc.) using a hash-based or

range-based partitioning scheme. When such partitioning

causes load imbalances across partitions and load spikes

on the frequently-used partition, administrators are forced

to scale each partition vertically.

We note that, in horizontally-scaled systems, the network

interconnect quickly becomes a bottleneck. Horizontal

scaling works for relatively simple schemas and queries

with joins on the partitioning attribute. However, if the

schema is complex, there is no single isolation-inducing

attribute, and even simple join queries require exchange of

data over the network between the distributed nodes.

When terabytes of data have to be shipped across the

network for each join in each query, performance is

limited by the latency and bandwidth of interconnect, thus

limiting the degree to which horizontal scaling can be

achieved. Commodity interconnects, like Gigabit Ethernet,

become insufficient; once again one must either up-grade

to expensive, proprietary, high-speed interconnects, or

reduce the volumes of data.

It quickly becomes apparent that horizontal scaling

requires native system support for parallelization across

hundreds of commodity hardware nodes. This is the only

way to properly harness the aggregate bandwidth and

processing power of a cluster, while taking advantage of

the price/performance benefits it offers. Whereas vertical

scaling is limited by hardware and cost, horizontal scaling

is fundamentally limited by the Interconnect - once this

bottleneck is removed, horizontal scaling becomes

unbounded.

The Manageability Challenge

In the previous section we concluded that horizontal

scaling using commodity hardware is the only way to

accommodate next-generation data analytics platforms.

We now analyze the implications of this choice on

manageability. In large-scale systems based on

commodity hardware, the total cost of ownership is

dominated by the human costs, not hardware or software;

these human costs go primarily toward system and

database administration, tuning, and maintenance.

rdemare
Pencil

 Confidential and Proprietary

 Do Not Distribute

6

In large-scale Internet services,

51% of downtime is due to human

mistakes in maintenance and

operations.

The vast majority of human

mistakes are due to unmanageable,

poorly designed systems.

A common assumption about commodity hardware is that

it fails more often and requires more maintenance than

expensive proprietary hardware. However, a recent study
1

on some of the largest Internet services has shown that

only 15% of downtime is due to hardware problems,

whereas 51% is caused by human mistakes in maintenance

and operations and 34% is due to software errors (note

that these downtime figures exclude scheduled downtime).

These Internet services predominantly use commodity

hardware and open-source software, and commodity

hardware is clearly not the main culprit.

How can we explain the large fraction due to human

mistakes? As system scale increases, the complexity of

maintenance processes increases: configuration involves

many different files, while tuning involves dozens of

parameters. The complexity of detecting failures, isolating

them, diagnosing, and finally recovering from them

becomes untenable, leading to errors. Management

consoles offer ever-greater visibility into hundreds of

operational metrics, but these are often ineffective in

identifying and correcting failures or performance

problems. Moreover, human-induced downtime has the

highest duration per occurrence: incorrect upgrades,

wrong performance tuning, mis-configurations all lead to

failures that take very long to detect and to remedy. The

vast majority of such mistakes result from the antiquated,

poor design of the underlying system, as well as from the

scarcity of good monitoring and management tools for

large-scale data analytics platforms.

Finally, the administrators that are called upon to manage

the software and data aspects are faced with an

exceptionally hard task. More data means more files to

manage, more operating system tuning and maintenance,

more file-system administration overhead

(RAID/SAN/NAS setup, logical volumes, disk space

allocation).

 1

D. Oppenheimer et al. "Why Do Internet Services Fail, and

What Can Be Done About It?” in USENIX Symposium on Internet

Technologies and Systems, 2003.

rdemare
Pencil

 Confidential and Proprietary

 Do Not Distribute

7

Next-generation data analytics

platforms require radical

improvements in self-management.

In large-scale data analytics

platforms, failure probabilities of

individual components add up

rapidly to reduce the MTTF of the

overall system.

Organizations typically respond by increasing their staff:

more administrators, more operations staff, and more

management tools and processes. This staff performs more

frequent backups, more manual replication, and requires

more inter-human communication. Yet, the effectiveness

of larger teams of administrators has significantly

diminishing returns, which leads to an unfavorable ROI

for the expansion of administration teams.

The solution for managing the next-generation data

analytics systems must be centered around extreme

simplification of management interfaces and processes.

The only way to achieve this degree of simplification in

complex large-scale systems is through the use of

pervasive self-management. An easy-to-manage data

analytics platform must be built from the ground up, with

extreme manageability in mind from day one.

The High-Availability Challenge

The cost of an outage in a data analytics system is directly

proportional to the number of revenue-generating

processes that are affected by the outage, as well as the

number of users whose productivity drops during the

outage. Yet, as the scale of an enterprise's data analytics

increases, so does the usage: more data, more users, more

queries. The cost of downtime is thus compounded, as

revenue-driving processes that drive the data volume

growth in data volumes and usage become themselves

more deeply engrained in the fabric of the organization. In

this section we analyze this challenge.

Availability of a system is generally an expression of the

system's readiness to deliver service, and can be expressed

as a ratio between the system's mean-time-to-failure

(MTTF) and its mean-time-to-recovery (MTTR):

Availability = MTTF / (MTTF + MTTR)

On small-scale systems, building several layers of

redundancy helps reduce MTTF. Consequently, some

organizations expect that mere redundancy and fail-over

can address all their availability concerns. However, large-

scale data analytics systems have tens to hundreds of

CPUs, hundreds to thousands of disks, frequent complex

loading processes, many administrators, many

rdemare
Pencil

 Confidential and Proprietary

 Do Not Distribute

8

Next-generation data analytics

systems must recover fast from

failures, and minimize disruption

caused by failures and ensuing

recovery.

An analytics system must offer

means to eliminate all scheduled

downtime.

Next-generation data analytics

systems should require zero human

intervention during recovery from a

wide range of failures.

applications running on top, and so on; the failure

probabilities of each of these individual parts add up to

drastically reduce the MTTF of the overall system.

Adding more such units for redundancy may actually

reduce overall availability, with the end result being a

diminishing return on the investment in redundant

hardware and software.

In the face of such diminishing returns on MTTF

improvements, the focus must be on reducing MTTR; in

the limit, a system that instantly recovers from every fault

is 100% available. Reducing unavailability (which is

approximately MTTR/MTTF) by an order of magnitude

through a ten-fold increase in MTTF is considerably more

difficult and expensive than reducing MTTR by a factor of

ten, especially in a very large-scale system. There are two

ways to reduce time-to-recover: first, one can preserve the

current approach to recovery, but engineer the system to

perform that recovery faster; second, one can reduce the

scope of recovery, thus making recovery both faster and

less disruptive.

Finally, scheduled downtime must always be factored in

overall downtime. A data analytics system that is up for

20 hours a day and unavailable while loading data during

the other 4 hours has an effective availability rating of

83% - i.e., not even a single nine of availability. As data

volumes increase, loading and backup times increase as

well, leading to even lower availability. It is therefore

imperative that load processes have minimal impact on the

ability of the system to serve queries.

In summary, mere reuse of replication technologies that

has worked in the past for vertically-scaled systems is now

insufficient, and the requirement of frequent human

intervention is hurting availability of large-scale data

analytics systems. To achieve high availability, enterprises

must choose analytics systems that recover fast, require no

downtime for loading and maintenance, minimize the

impact of failure and recovery on their users, and demand

no human intervention during recovery.

rdemare
Pencil

 Confidential and Proprietary

 Do Not Distribute

9

Beehive is a scalable cluster-based

data analytics engine.

The Beehive cluster consists of 3

classes of nodes: queens (Q),

workers (W), and loaders (L).

Beehive: A New Data Analytics Platform

Aster Data Systems offers the Aster Beehive, a novel

cluster-based data analytics engine that is able to store and

analyze data in sizes ranging from a hundred gigabytes to

hundreds of terabytes. It provides fast queries over large

data volumes while supporting industry-standard

ODBC/JDBC SQL interfaces and transactions.

Beehive is a software appliance that harnesses the power

of a large cluster of commodity hardware nodes to provide

the highest level of price/performance & linear scalability.

Beehive offers administrators a single-system view of the

cluster, and transparently handles query distribution, result

aggregation, node failures, data distribution and load

balancing. The platform enables plug-and-play, one-node-

at-a-time incremental scaling, as well as in-flight removal

of nodes to allow phasing out of failed or old hardware.

Beehive Architecture: Clean Separation of

Concerns

Beehive is a shared-nothing data analytics engine that is

designed from the ground up to run on large clusters of

commodity nodes. Each such node is composed of parts

that provide the best price/performance of the day: for

example, in 2006, the best price/performance components

are 8 GB RAM, 4 x 250-GB SATA disks, and dual-

processor dual-core AMD Opteron systems interconnected

by a fabric of 24-port 1Gb Ethernet switches.

Beehive manages user data in locally-attached storage on

individual nodes within the cluster. Internally, the cluster

consists of three separate classes of nodes: queens,

workers, and loaders.

The Queen nodes provide the external single-system

interface to the data analytics engine. End-users and

administrators connect to a Queen through ODBC/JDBC,

while system administrators monitor Beehive through the

APIs provided by a Queen. The Queen nodes are also

responsible for coordinating the cluster nodes in query

processing, result aggregation and failure handling.

N
1

BI

Reports

Beehive

N
2

N
3

W W WW
.

.

.

L L L

Q Q
.

.

.

rdemare
Pencil

 Confidential and Proprietary

 Do Not Distribute

10

Each tier in Beehive can scale

linearly, independently of all other

tiers.

Beehive implements a provably

optimal data partitioning algorithm.

Beehive addresses the

price/performance challenge

through linear, incremental scaling

across a wide range.

The Worker nodes are responsible for storing partitions of

data and replicas of data that resides at other Worker

nodes. The Worker nodes also participate in query

processing and maintenance tasks (e.g., indexing,

backups, load balancing) as invoked by the Queen nodes.

The Loader nodes are responsible for partitioning and

loading of new data into the Worker nodes.

The three-tier design encapsulates a clean separation of

concerns for data analytics processes. Each tier can be

independently scaled in response to the workload

characteristics. For example, if the number of connections

increases, the cluster can be populated with more Queen

nodes; if data volumes grow, the number of Worker nodes

can be increased; if faster loads are desired, more Loader

nodes can be provisioned.

Addressing the Challenges of Next-Generation

Data Analytics Platform

Beehive is built from the ground up to provide high

performance while scaling to hundreds of terabytes. Two

key innovations allow Beehive to overcome the price /

performance challenge of large-scale data analytics

platforms: a revolutionary data partitioning algorithm, and

specialized incremental scaling algorithms.

Beehive implements a provably-optimal data partitioning

algorithm that

1. determines the optimal partitioning strategy using

statistics of incoming data,

2. solves the network performance bottleneck of

horizontal systems, and

3. corrects data imbalances, thus ensuring load balancing

without any performance impact or downtime.

Beehive provides for incremental scaling of Worker nodes

which ensures that each addition of a commodity node

will proportionally speed up the workload.

Taken together, Beehive addresses the price/performance

challenge by enabling automated horizontal scaling in

low-cost steps: to scale the data analytics platform by

100GB, just add one more $3K commodity Worker node.

Performance will increase along with the data capacity of

the system.

rdemare
Pencil

 Confidential and Proprietary

 Do Not Distribute

11

Human operator interaction with

Beehive is limited to plugging in

new nodes and removing old ones.

Beehive addresses the

Manageability Challenge by

radically simplifying the human

operator tasks, thereby eliminating

error-prone human management.

Beehive addresses the manageability challenge of

large-scale data analytics by presenting a single-system

image to end-users and administrators. The complexities

of cluster management are completely hidden from the

human operators.

The interaction of human operators with Beehive is

limited to two simple tasks: plug new nodes into the

cluster, and/or remove failed/old-generation nodes from

the cluster racks.

Once a new PXE-enabled node is powered on in the

cluster, Beehive takes over the entire process of imaging

the node, migrating data over to the new node from an

overloaded node, constructing the requisite indexes on the

newly gained data and creating the requisite backups.

Once a failed node is detected, or an old-generation node

is marked for replacement, Beehive takes over the entire

process of isolating the node from the operational cluster,

assigning its data to other nodes in the cluster, and

updating the necessary status maps for the replicas.

We note that in terms of managing the actual data,

Beehive is significantly simpler than traditional databases.

The administrator does not have to be concerned about

configuration issues relating to the file-system and

operating system. For example, there are no visible files to

manage, no RAID arrays to create, no kernel patches to

apply, no disk space to allocate, etc. The database

administrator manages the system only through standard

SQL commands.

Beehive addresses the high-availability challenge of

large-scale data analytics by building an automated

multi-tier failure recovery process that focuses on

reducing MTTF as well as MTTR for the failed

components.

Internally, each user data byte is replicated three times

across disjoint hardware sets. The replication factor helps

reduce MTTF; observe that the commodity structure of the

cluster keeps the costs low even for such a high

redundancy factor. Beehive detects and recovers from

failures very fast, ensuring minimal MTTR.

rdemare
Pencil

 Confidential and Proprietary

 Do Not Distribute

12

Beehive addresses the

High-Availability Challenge by

making failure recovery very fast

and automatic.

Beehive scales linearly in

queries/sec with the number of

Worker nodes in the cluster.

The Beehive philosophy is to cast failures of components

as performance degradations. This conscious trade-off of

performance for availability enables us to design Beehive

to minimize outages.

For example, if a Worker node fails, queries that are

currently being processed in Beehive do not fail. Instead,

Beehive recovers from the failure transparently within

seconds, and restarts the lost portion of the queries on an

appropriate dataset. A failure thus induces minimal

amount of re-work, ensuring that the large-scale cluster

makes progress even as nodes join or leave the cluster.

Benchmarks on the Beehive Prototype

TPC-H is an industry-standard benchmark for evaluating

data analytics systems; the #1 TPC-H position is highly

coveted by database vendors, and they spend millions of

dollars to tune and optimize their systems for these

benchmark tests.

In our internal benchmarking of the Throughput Test on

100-GB and 300-GB datasets in May 2005, a Beehive

prototype achieved higher performance than the fastest

TPC-H systems in the respective categories, while

delivering a 8x-12x price/performance advantage. These

results were shown analytically to hold for multi-terabyte

databases as well (1TB, 3TB, 10TB, etc.).

No special tuning was performed for this benchmark.

In conclusion, the Aster Data Systems Beehive platform is

raising the bar for next-generation data analytics systems,

by successfully addressing the challenges related to

price/performance, manageability, and high availability.

rdemare
Pencil

 Confidential and Proprietary

 Do Not Distribute

13

 About Aster Data Systems

Aster Data Systems, Inc. is an early-stage stealth-mode

startup company building high-performance, ultra-

scalable, affordable data analytics solutions for the

enterprise. The company is based in Redwood Shores, CA

and was founded by three Ph.D. students from the

Computer Science Department at Stanford University. The

Beehive platform is based on a number of unique, patent-

pending innovations.

Mayank Bawa, Founder & Chief Executive Officer

Mayank graduated with a Ph.D. in computer science from

Stanford University in 2005, where he designed and

implemented algorithms for querying large distributed

data systems. Mayank has published a dozen academic

papers in the top database conferences. He has been

affiliated with IBM Research and Microsoft Research. At

Stanford University, Mayank was named Sequoia Capital

Fellow as part of the Stanford Graduate Fellowship

program. Prior to Stanford, Mayank received his B.S. in

computer science from IIT Bombay; he ranked 4th in the

entrance exams for the IITs.

George Candea, Founder & Chief Technology Officer

George received his Ph.D. in computer science from

Stanford University in 2005, where he focused on large-

scale software system dependability; his key contributions

are the "microreboot" technique for fast recovery from

software failures and the "crash-proof design" for software

construction. He was a co-founder of the Recovery-

Oriented Computing (ROC) project and has published

over a dozen research papers in this area. In 2005, George

was awarded the Top 35 Young Technology Innovators

award by the MIT Technology Review. Between 1998-

2003, George was a senior developer at Oracle Corp. in

the distributed systems and caching division; previously,

he held positions at IBM Research and Microsoft

Research. He received his BS and MS in computer science

from the Massachusetts Institute of Technology, where he

worked on operating systems and mobile computing.

rdemare
Pencil

 Confidential and Proprietary

 Do Not Distribute

14

 Tassos Argyros, Founder & Vice President Engineering

Tassos has been working with Prof. David Cheriton in the

Computer Science department at Stanford University, as

part of his PhD research. As a member of the Distributed

Systems Group, Tassos was investigating the network and

software issues involved in the design and implementation

of large-scale data clusters. He is a recipient of a Stanford

Graduate Fellowship and holds a Diploma in Electrical

and Computer Engineering from the National Technical

University of Athens.

For more information, please contact us at

info@asterdata.com or 1-888-ASTER-DATA.

rdemare
Pencil

